A Geometric Proof of the Siebeck–Marden Theorem

نویسنده

  • Beniamin Bogosel
چکیده

The Siebeck–Marden theorem relates the roots of a third degree polynomial and the roots of its derivative in a geometrical way. A few geometric arguments imply that every inellipse for a triangle is uniquely related to a certain logarithmic potential via its focal points. This fact provides a new direct proof of a general form of the result of Siebeck and Marden. Given three noncollinear points a, b, c ∈ C, we can consider the cubic polynomial P(z) = (z − a)(z − b)(z − c), whose derivative P ′(z) has two roots f1, f2. The Gauss–Lucas theorem is a well-known result which states that given a polynomial Q with roots z1, . . . , zn , the roots of its derivative Q ′ are in the convex hull of z1, . . . , zn . In the simple case where we have only three roots, there is a more precise result. The roots f1, f2 of the derivative polynomial are situated in the interior of the triangle abc and they have an interesting geometric property: f1 and f2 are the focal points of the unique ellipse that is tangent to the sides of the triangle abc at its midpoints. This ellipse is called the Steiner inellipse associated to the triangle abc. In the rest of this note, we use the term inellipse to denote an ellipse situated in a triangle that is tangent to all three of its sides. This geometric connection between the roots of P and the roots of P ′ was first observed by Siebeck (1864) [12] and was reproved by Marden (1945) [8]. There has been substantial interest in this result in the past decade: see [3],[5, pp. 137–140] [7],[9],[10],[11]. Kalman [7] called this result Marden’s theorem, but in order to give credit to Siebeck, who gave the initial proof, we call this result the Siebeck–Marden theorem in the rest of this note. Apart from its purely mathematical interest, the Siebeck–Marden theorem has a few applications in engineering. In [2] this result is used to locate the stagnation points of a system of three vortices and in [6] this result is used to find the location of a noxious facility location in the three-city case. The proofs of the Siebeck–Marden theorem found in the references presented above are either algebraic or geometric in nature. The initial motivation for writing this note was to find a more direct proof, based on geometric arguments. The solution was found by answering the following natural question: Can we find two different inellipses with the same center? Indeed, let’s note that (a + b + c)/3 = ( f1 + f2)/2, which means that the centers of ellipses having focal points f1, f2 coincide with the centroid of the triangle abc. The geometric aspects of the problem can be summarized in the following questions. 1. Is an inellipse uniquely determined by its center? 2. Which points in the interior of the triangle abc can be centers of an inellipse? 3. What are the necessary and sufficient conditions required such that two points f1 and f2 are the focal points of an inellipse? 4. Is there an explicit connection between the center of the inellipse and its tangency points? http://dx.doi.org/10.4169/amer.math.monthly.124.5.459 MSC: Primary 97G50

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Elementary Proof of Marden's Theorem

I call this Marden’s Theorem because I first read it in M. Marden’s wonderful book [6]. But this material appeared previously in Marden’s earlier paper [5]. In both sources Marden attributes the theorem to Siebeck, citing a paper from 1864 [8]. Indeed, Marden reports appearances of various versions of the theorem in nine papers spanning the period from 1864 to 1928. Of particular interest in wh...

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

The Basic Theorem and its Consequences

Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...

متن کامل

Another proof of Banaschewski's surjection theorem

We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...

متن کامل

Singular Surfaces, Mod 2 Homology, and Hyperbolic Volume, I

The main theorem of this paper states that if M is a closed orientable hyperbolic 3-manifold of volume at most 3.08, then the rank of H1(M ;Z/2Z) is at most 10. The theorem depends on a purely topological result which can be viewed as an analogue of Dehn’s lemma for π1-injective singular surfaces of genus 2. The proof of the main theorem combines this topological result with several deep geomet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015